hsluv.py 9 KB
Newer Older
Jonas Schäfer's avatar
Jonas Schäfer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
# This file was taken from https://github.com/hsluv/hsluv-python
#
# Copyright (c) 2015 Alexei Boronine
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" This module is generated by transpiling Haxe into Python and cleaning
the resulting code by hand, e.g. removing unused Haxe classes. To try it
yourself, clone https://github.com/hsluv/hsluv and run:

    haxe -cp haxe/src hsluv.Hsluv -python hsluv.py
"""

import math



__version__ = '0.0.2'

m = [[3.240969941904521, -1.537383177570093, -0.498610760293],
     [-0.96924363628087, 1.87596750150772, 0.041555057407175],
     [0.055630079696993, -0.20397695888897, 1.056971514242878]]
minv = [[0.41239079926595, 0.35758433938387, 0.18048078840183],
        [0.21263900587151, 0.71516867876775, 0.072192315360733],
        [0.019330818715591, 0.11919477979462, 0.95053215224966]]
refY = 1.0
refU = 0.19783000664283
refV = 0.46831999493879
kappa = 903.2962962
epsilon = 0.0088564516
hex_chars = "0123456789abcdef"


def _distance_line_from_origin(line):
    v = math.pow(line['slope'], 2) + 1
    return math.fabs(line['intercept']) / math.sqrt(v)


def _length_of_ray_until_intersect(theta, line):
    return line['intercept'] / (math.sin(theta) - line['slope'] * math.cos(theta))


def _get_bounds(l):
    result = []
    sub1 = math.pow(l + 16, 3) / 1560896
    if sub1 > epsilon:
        sub2 = sub1
    else:
        sub2 = l / kappa
    _g = 0
    while _g < 3:
        c = _g
        _g = _g + 1
        m1 = m[c][0]
        m2 = m[c][1]
        m3 = m[c][2]
        _g1 = 0
        while _g1 < 2:
            t = _g1
            _g1 = _g1 + 1
            top1 = (284517 * m1 - 94839 * m3) * sub2
            top2 = (838422 * m3 + 769860 * m2 + 731718 * m1) * l * sub2 - (769860 * t) * l
            bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
            result.append({'slope': top1 / bottom, 'intercept': top2 / bottom})
    return result


def _max_safe_chroma_for_l(l):
    bounds = _get_bounds(l)
    _hx_min = 1.7976931348623157e+308
    _g = 0
    while _g < 2:
        i = _g
        _g = _g + 1
        length = _distance_line_from_origin(bounds[i])
        if math.isnan(_hx_min):
            _hx_min = _hx_min
        elif math.isnan(length):
            _hx_min = length
        else:
            _hx_min = min(_hx_min, length)
    return _hx_min


def _max_chroma_for_lh(l, h):
    hrad = h / 360 * math.pi * 2
    bounds = _get_bounds(l)
    _hx_min = 1.7976931348623157e+308
    _g = 0
    while _g < len(bounds):
        bound = bounds[_g]
        _g = (_g + 1)
        length = _length_of_ray_until_intersect(hrad, bound)
        if length >= 0:
            if math.isnan(_hx_min):
                _hx_min = _hx_min
            elif math.isnan(length):
                _hx_min = length
            else:
                _hx_min = min(_hx_min, length)
    return _hx_min


def _dot_product(a, b):
    sum = 0
    _g1 = 0
    _g = len(a)
    while _g1 < _g:
        i = _g1
        _g1 = _g1 + 1
        sum += a[i] * b[i]
    return sum


def _from_linear(c):
    if c <= 0.0031308:
        return 12.92 * c
    else:
        return 1.055 * math.pow(c, 0.416666666666666685) - 0.055


def _to_linear(c):
    if c > 0.04045:
        return math.pow((c + 0.055) / 1.055, 2.4)
    else:
        return c / 12.92


def xyz_to_rgb(_hx_tuple):
    return [
        _from_linear(_dot_product(m[0], _hx_tuple)),
        _from_linear(_dot_product(m[1], _hx_tuple)),
        _from_linear(_dot_product(m[2], _hx_tuple))]


def rgb_to_xyz(_hx_tuple):
    rgbl = [_to_linear(_hx_tuple[0]),
            _to_linear(_hx_tuple[1]),
            _to_linear(_hx_tuple[2])]
    return [_dot_product(minv[0], rgbl),
            _dot_product(minv[1], rgbl),
            _dot_product(minv[2], rgbl)]


def _y_to_l(y):
    if y <= epsilon:
        return y / refY * kappa
    else:
        return 116 * math.pow(y / refY, 0.333333333333333315) - 16


def _l_to_y(l):
    if l <= 8:
        return refY * l / kappa
    else:
        return refY * math.pow((l + 16) / 116, 3)


def xyz_to_luv(_hx_tuple):
    x = float(_hx_tuple[0])
    y = float(_hx_tuple[1])
    z = float(_hx_tuple[2])
    divider = x + 15 * y + 3 * z
    var_u = 4 * x
    var_v = 9 * y
    if divider != 0:
        var_u = var_u / divider
        var_v = var_v / divider
    else:
        var_u = float("nan")
        var_v = float("nan")
    l = _y_to_l(y)
    if l == 0:
        return [0, 0, 0]
    u = 13 * l * (var_u - refU)
    v = 13 * l * (var_v - refV)
    return [l, u, v]


def luv_to_xyz(_hx_tuple):
    l = float(_hx_tuple[0])
    u = float(_hx_tuple[1])
    v = float(_hx_tuple[2])
    if l == 0:
        return [0, 0, 0]
    var_u = u / (13 * l) + refU
    var_v = v / (13 * l) + refV
    y = _l_to_y(l)
    x = 0 - ((9 * y * var_u) / (((var_u - 4) * var_v) - var_u * var_v))
    z = (((9 * y) - (15 * var_v * y)) - (var_v * x)) / (3 * var_v)
    return [x, y, z]


def luv_to_lch(_hx_tuple):
    l = float(_hx_tuple[0])
    u = float(_hx_tuple[1])
    v = float(_hx_tuple[2])
    _v = (u * u) + (v * v)
    if _v < 0:
        c = float("nan")
    else:
        c = math.sqrt(_v)
    if c < 0.00000001:
        h = 0
    else:
        hrad = math.atan2(v, u)
        h = hrad * 180.0 / 3.1415926535897932
        if h < 0:
            h = 360 + h
    return [l, c, h]


def lch_to_luv(_hx_tuple):
    l = float(_hx_tuple[0])
    c = float(_hx_tuple[1])
    h = float(_hx_tuple[2])
    hrad = h / 360.0 * 2 * math.pi
    u = math.cos(hrad) * c
    v = math.sin(hrad) * c
    return [l, u, v]


def hsluv_to_lch(_hx_tuple):
    h = float(_hx_tuple[0])
    s = float(_hx_tuple[1])
    l = float(_hx_tuple[2])
    if l > 99.9999999:
        return [100, 0, h]
    if l < 0.00000001:
        return [0, 0, h]
    _hx_max = _max_chroma_for_lh(l, h)
    c = _hx_max / 100 * s
    return [l, c, h]


def lch_to_hsluv(_hx_tuple):
    l = float(_hx_tuple[0])
    c = float(_hx_tuple[1])
    h = float(_hx_tuple[2])
    if l > 99.9999999:
        return [h, 0, 100]
    if l < 0.00000001:
        return [h, 0, 0]
    _hx_max = _max_chroma_for_lh(l, h)
    s = c / _hx_max * 100
    return [h, s, l]


def hpluv_to_lch(_hx_tuple):
    h = float(_hx_tuple[0])
    s = float(_hx_tuple[1])
    l = float(_hx_tuple[2])
    if l > 99.9999999:
        return [100, 0, h]
    if l < 0.00000001:
        return [0, 0, h]
    _hx_max = _max_safe_chroma_for_l(l)
    c = _hx_max / 100 * s
    return [l, c, h]


def lch_to_hpluv(_hx_tuple):
    l = float(_hx_tuple[0])
    c = float(_hx_tuple[1])
    h = float(_hx_tuple[2])
    if l > 99.9999999:
        return [h, 0, 100]
    if l < 0.00000001:
        return [h, 0, 0]
    _hx_max = _max_safe_chroma_for_l(l)
    s = c / _hx_max * 100
    return [h, s, l]


def rgb_to_hex(_hx_tuple):
    h = "#"
    _g = 0
    while _g < 3:
        i = _g
        _g = _g + 1
        chan = float(_hx_tuple[i])
        c = math.floor(chan * 255 + 0.5)
        digit2 = int(c % 16)
        digit1 = int((c - digit2) / 16)

        h += hex_chars[digit1] + hex_chars[digit2]
    return h


def hex_to_rgb(hex):
    hex = hex.lower()
    ret = []
    _g = 0
    while _g < 3:
        i = _g
        _g = _g + 1
        index = i * 2 + 1
        _hx_str = hex[index]
        digit1 = hex_chars.find(_hx_str)
        index1 = i * 2 + 2
        str1 = hex[index1]
        digit2 = hex_chars.find(str1)
        n = digit1 * 16 + digit2
        ret.append(n / 255.0)
    return ret


def lch_to_rgb(_hx_tuple):
    return xyz_to_rgb(luv_to_xyz(lch_to_luv(_hx_tuple)))


def rgb_to_lch(_hx_tuple):
    return luv_to_lch(xyz_to_luv(rgb_to_xyz(_hx_tuple)))


def hsluv_to_rgb(_hx_tuple):
    return lch_to_rgb(hsluv_to_lch(_hx_tuple))


def rgb_to_hsluv(_hx_tuple):
    return lch_to_hsluv(rgb_to_lch(_hx_tuple))


def hpluv_to_rgb(_hx_tuple):
    return lch_to_rgb(hpluv_to_lch(_hx_tuple))


def rgb_to_hpluv(_hx_tuple):
    return lch_to_hpluv(rgb_to_lch(_hx_tuple))


def hsluv_to_hex(_hx_tuple):
    return rgb_to_hex(hsluv_to_rgb(_hx_tuple))


def hpluv_to_hex(_hx_tuple):
    return rgb_to_hex(hpluv_to_rgb(_hx_tuple))


def hex_to_hsluv(s):
    return rgb_to_hsluv(hex_to_rgb(s))


def hex_to_hpluv(s):
    return rgb_to_hpluv(hex_to_rgb(s))